Programme de la colle 10

Semaine du 09/12/2024.

Démonstrations de cours sur le calcul matriciel OU les suites :

- 1. Associativité du produit matriciel.
- 2. Produit de deux matrices élémentaires.
- 3. Formule du binôme pour deux matrices qui commutent.
- 4. Stabilité de l'ensemble des matrices triangulaires supérieures par produit.
- 5. Pour $A \in \mathcal{M}_n(\mathbb{K})$, $A \in GL_n(\mathbb{K})$ ssi pour tout $B \in \mathcal{M}_{n,1}(\mathbb{K})$, l'équation AX = B admet une unique solution.
- 6. Toute suite réelle convergente est bornée.
- 7. Si $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ tendent vers la même limite $\ell\in\overline{\mathbb{R}}$ alors $(u_n)_{n\in\mathbb{N}}$ tend vers ℓ .
- 8. Théorème de la limite monotone.
- 9. Théorème des suites adjacentes.
- 10. Formule explicite d'une suite arithmético-géométrique.
- 11. Étude de $(u_n)_{n\in\mathbb{N}}$ où pour tout $n\in\mathbb{N}$, $u_{n+1}=\sqrt{1+u_n}$ et u_0 fixé.

Suites numériques

CONTENUS	Capacités & commentaires
b) Généralités sur les suites réelles	
Suite majorée, minorée, bornée. Suite stationnaire, mo- notone, strictement monotone. Modes de définition d'une suite réelle : explicite, implicite ou par récurrence.	Une suite $(u_n)_{n\in\mathbb{N}}$ est bornée si et seulement si $(u_n)_{n\in\mathbb{N}}$ est majorée.
c) Limite d'une suite réelle	
Limite finie ou infinie d'une suite. Unicité de la limite. Suite convergente, suite divergente. Toute suite réelle convergente est bornée.	Les définitions sont énoncées avec des inégalités larges. Notation $u_n \to \ell$, $\lim u_n$.
Opérations sur les limites : combinaisons linéaires, produit, quotient. Passage à la limite d'une inégalité large. Si $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell>0$, alors $u_n>0$ à partir d'un	Produit d'une suite bornée et d'une suite de limite nulle.
certain rang. Existence d'une limite par encadrement (limite finie), par minoration (limite $+\infty$), par majoration (limite $-\infty$).	Utilisation d'une majoration de la forme $ u_n - \ell \le v_n$, où (v_n) converge vers 0.
d) Suites monotones	
Théorème de la limite monotone. Théorème des suites adjacentes.	
Approximations décimales d'un réel.	Valeurs décimales approchées à la précision 10^{-n} par défaut et par excès. Tout réel est limite d'une suite de rationnels.
e) Suites extraites	
Suite extraite.	Tout développement théorique sur les suites extraites est hors programme.
Si une suite possède une limite, toutes ses suites extraites possèdent la même limite.	Utilisation des suites extraites pour montrer la divergence d'une suite. Si (u_{2n}) et (u_{2n+1}) tendent vers ℓ , alors (u_n) tend vers ℓ . Le théorème de Bolzano-Weierstrass est hors programme.

f) Suites complexes

Brève extension des définitions et résultats précédents.

Caractérisation de la limite en termes de par parties réelle et imaginaire.

g) Suites particulières

Suites arithmétiques, géométriques, arithmético-géométriques.

Suites récurrentes linéaires d'ordre 2 à coefficients constants.

Présentation de l'étude des suites définies par une relation de récurrence $u_{n+1} = f(u_n)$ sur quelques exemples simples. Représentation géométrique. Si (u_n) converge vers un élément ℓ en lequel f est continue, alors $f(\ell) = \ell$.

Pour une relation de récurrence $u_{n+1} = au_n + b$, où $a \in \mathbb{C} \setminus \{1\}$ et $b \in \mathbb{C}$, recherche d'une solution constante, détermination des solutions.

Cette étude est l'occasion d'introduire les notions d'intervalle stable par une fonction. Pour l'étude de la monotonie de (u_n) , on souligne l'intérêt, d'une part, de l'étude du signe de f(x) - x, et d'autre part, de l'utilisation de la croissance éventuelle de f.

Mathématiques PCSI 2 2/2